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The first solution of the dynamic problem of thermal shock at the boundary of a half-space was proposed by Danilovsaya.! In recent
years, a scientific area has developed in thermomechanics, in which the propagation velocity of heat pulses are taken into account.2 The
existence of experimental facts, which are contrary to Fourier representations, are the reasons for constructing a number of models of
heat conduction, which predict a finite propagation velocity of heat waves. We can distinguish a class of models, leading to a hyperbolic
heat-conduction equation. Thus, the generalized heat-conduction equation (but ignoring coupling) is used to describe temperature fields,
which arise in highly intense heat exchange in pulsed and laser devices, in the laser processing of metals, in plasma deposition, in the
high-power channels of nuclear reactors and in many other industrial technological processes.

Despite the large number of investigations in thermoelasticity, it is still an urgent matter to develop analytic and numerical methods
of solving boundary-value problems in this area. Below we propose an approach to solving two-dimensional inner and outer boundary-
value problems (taking into account the finite propagation velocity of thermal perturbations), which rest on fundamental solutions of the
two-dimensional equations of coupled thermoelasticity,> with subsequent use of the techniques of singular integral equations.

1. Formulation of the problem

We will consider, in a Cartesian system of coordinates Ox; X5, an elastic plate, weakened by a finite number of openings with a common
boundary I'=Ul', =%, v=1,2,..., N.On I" we specify a stress vector, and also a heat flux, which vary harmonically with time. The problem
consists of determining the coupled thermoelastic fields for harmonic or pulsed excitation of the plate, taking into account the finite
propagation velocity of heat pulses.

The differential equations of coupled thermoelasticity have the form24
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where p; are the components of the displacement vector, e= diu; (I=1, 2) is the volume expansion, A and . are the Lamé constants, v is
Poisson’s ratio, ar is the temperature coefficient of linear expansion of an isotropic body, 8 =T — Ty is the temperature increment (T is
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Table 1

Material A\ x 1019, N/m? W x 10719, N/m? p x 1073, kg/m? ce x 1072, J/(kg k) ar x 108, K1 d at To=330K
Non-organic glass 248 29 25 8.33 9 0.0027
Polyvinylacetals 0.393 0.098 1.07 10.8 230 0.487

the temperature of the body in the undeformed and unstressed state and T is the absolute temperature of points of the body), F; are the

components of the intensity of the bulk load, p is the density, vr = \/a?/7* is the propagation velocity of heat pulses, T is the heat flux
relaxation time, a? =\1/cep is the thermal diffusivity, c, is the volume heat capacity for constant strain, At is the thermal conductivity of
the material and W is the heat-source density function.
The expressions for the components of the stress tensor have the form®
Oy = MOu;)dy; + 1(dpu; + 0 ) — (BN +21) 070y, (13)
where 8;; is the Kronecker delta.
Egs. (1.1) and (1.2) are coupled. They describe the deformation of a body which occurs due to the action of transient thermal and
mechanical actions, and also the inverse effect, namely, the change in the temperature of the body due to deformation.
The coupled part of the heat-conduction Eq. (1.2) has been analysed, and was rewritten as follows® (for convenience for 7*=0and W=0):
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where the following new (dimensionless) variables have been introduced
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The connectivity parameter 8 is fairly small for non-organic and a number of organic glasses and metals (see Table 1), and the contribution
of the deformation to the temperature field is unimportant. For polyvinylacetals (polyvinylformal, polyvinylethylal and polyvinylbutyral)
the coupling factor is of the order of unity, which indicates a possible increment of the temperature and the stresses when the term reflecting
the mechanical coupling is taken into account.

2. The matrix of fundamental solutions of the system
Bearing in mind the harmonic form of the change of the field quantities with time, we put
u; = Re| exp(-iot)U; |, ©,; = Re| exp(-iwr)Sy; |, © = Re[exp(-iot)Us]
e = Re[exp(—iwt)e*g, Fj = Re[exp(—i(ot)Xj], W = Rel[exp(-iot)Q]; k,j = 1,2

where U;, Sy, Us, e-, X;, Q are the amplitudes of the corresponding quantities and o is the angular frequency.
Eliminating the time factor exp(—iwt) in the equations of motion (1.1) and heat conduction (1.2), we can represent them in amplitudes
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Suppose a concentrated force Re[(P;, P;)exp(—iwt)] or a concentrated heat source Re[P; exp(—iwt)], varying harmonically with time,
acts at the point (x19, X290 ). Differentiating the first equation of system (2.1) with respect to the coordinate x; and differentiating the second
equation with respect to the coordinate x, and then adding them, we arrive at the system
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1 (2.2)

where §(x) is the delta function.
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Henceforth it is more convenient to integrate system (2.2) in the space D'(R?) of generalized functions.”
We will consider in more detail the case when P; # 0, P, = P3 =0. Introducing the resolving function ®(x;,x,) using the formulae

ex = Ip®, Uy = —1,®

we convert system (2.2) to a fourth-order inhomogeneous differential equation

(V*V2+dV +b)® = 9,8(x)
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We will represent the solution of this equation in the form

iP,
D =

3 2( 1)~ (l)(li,r) r= *\/(xl x10)” + (X = Xg0)”
4H(I+0')(P~z M) oy (23)

where Hé”(x) is the Hankel function of the first kind of order p, and p; (Imp; >0, j=1, 2) is the root of the equation 4 —dz2+b=0.
Taking representation (2.3) into account, we conclude that system (2.1) can be split into three independent equations
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We introduce the following notation
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Integrating Eq. (2.4) in the space of generalized functions D’, we obtain
P,
n_mgn’ n_15253

Considering the cases P, # 0, P;=P3=0 and P; # 0, P; =P, =0 in the same way, we obtain final expressions for the amplitudes of the
displacements and the temperature

P
U = e m = 1,2,3
4ip (2.6)
The matrix of the fundamental solutions | |g(m) ||is used later when constructing integral representations of the solutions of the boundary-
value problem.
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3. The integral equations of the boundary-value problem of coupled thermoelasticity

The complex boundary equalities on the contour I" in the case of force and thermal excitation have the form
AU,
on

Sy =8Su+Sn, 8= 8p-8+2iS;, S2=85,-8,-2i5, (3.1)

S, —evs, = 2eV(X,, - iX,,), S,-e V5, = 2e7V(X,, +iX,,), A= = @

where Xi, and X5, are the components of the external load vector acting on the boundary area with normal n, ® is the heat flux specified
on the contour I and s is the angle between the outward normal to the contour I" and the Ox; axis.

To determine the wave fields of the stresses and the temperature in the plate, we will introduce integral representations of the amplitudes
of the displacements and the temperature in the form of convolutions

N
Un(2) = jz z <t;)g(’"’<c, ds, Lel= UT,, n=123;

rm=1 v=1

Z,(8) = {Z,,(8),Ce r vt (3.2)

where Z;;({) are unknown “densities”, and g,({'” are the components of the matrix of the fundamental solutions (2.6) defined by formulae
(2.5). Using expressions (3.2) and the law (1.3) we obtain the components of the stress tensor, after which we determine the combinations
of the field quantities occurring in condition (3.1). Substituting the limiting values of these quantities into the boundary conditions we
obtain a system of singular integral equations of the second kind on the contour I

£ 4iW, (o) + | Z W, (0K (L Co)ds = F (Gy), GoeT = ur p=123
rm=1 v=l (33)
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N and T are the amplitudes of the normal and shear forces, applied to the contour I', and E is Young’s modulus; the upper sign in Eq.
(3.3) corresponds to the inner problem and the lower sign corresponds to the outer problem.
The normal circumferential stress ogg and the temperature 6 on the contour I are given by the formulae

639 = ReLexp(-iwt)Sz;reJ, 0 = Re[exp(-iwt)U;]

. 3
Sge(go) = 2H0{i m[wl(go) + W)l + 'l[mgl W, (DR, (C, Co)ds}‘ N
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4. Pulsed excitation of a plate with a hole

Suppose a trapezoidal pulse with respect to time

N, (t—t)/(t.—ty), t.<t<ty,

c =

0, t;<t<eo

acts on the contour of the hole I', where Ny, t;, tc and t; are the parameters of the pulse.
In this case the solution of the dynamic problem can be “chosen” from a packet of monochromatic waves using a unilateral Fourier
integral transformation in time

Foy(xp, Xy ®) = ﬁ [FQx, xp, 0e®dt, Fxy, xp,1) = ﬁRe]F*(xl,xz, ®)e ™ do
0 0

Applying a Fourier transformation to the equations of motion and heat conduction (1.1) and (1.2), we obtain system (2.1) with respect
to the corresponding transformants.
The field quantities are found using an inverse Fourier transformation.

5. Results of calculations

Suppose an unbounded elastic medium is weakened by a single hole. To obtain the constructed algorithm numerically we will introduce
parametrization of the contour of the hole I'

C =00, & = C(9y), 0<@, ¢y <2m



616 V.N. Kobzar’, L.A. Fil'shtinskii / Journal of Applied Mathematics and Mechanics 72 (2008) 611-618

Table 2

Material E x 1071°, N/m? Ce, J/(kg K) p x 1073, kg/m? v ar x 108, K1 ar, J/(msk) )
Aluminium 7 861 2.7 0.34 26 207 0.038
Polystyrene 0.255 1077 1.04 0.3 70 0.16 0.015
Polyvinyl-butyral 0.275 1077 1.07 0.4 230 0.16 0.431

Applying the method of mechanical quadratures3 to the singular integral equations (3.3) and bearing in mind the interpolation formula
(for an odd number of points of subdivision of the contour)

P — O n(2k-1 2n(l-1
W(oy) = 2( l)kHW((pk)cosec 5 0], O = —_(—71——)’ ®y; = (n )’
k—]
l=1,2,...,n

we reduce them to a system of a linear algebraic equations in the values of the densities Wy;(¢}) at the interpolation points ¢

n 3
TS W90 [+4z< D18 eosee B4 2w, (04 0005500 | = nF (000

k=1m=1

=1,2,3;, [ = 1,2,...,n

C‘j—(;upk) = E@ITP+ M (001A L = E+im

Relations (3.4) can be converted to the form

Seo(@or) = 2%9 Yy {iﬁ(—l)k’Llcosecq’k—T%[Wl((pk) + W, (o)1 +
k=1
3
+27‘z W (9 )R, (9, (POI) (‘Pk)} I=12..,n
m=1
Us(9g) = — z z W, (9 RS (‘Pk, (P01) ((Pk)
" it

In the dynamic problem we used the inverse Fourier transformation algorithm, based on an approximation of the transform using
continued fractions.>10

Graphs of the amplitude of the modulus of the normal circumferential stress |Spg| against the relative wave number <y, (r=0.1 m) are
shown in Fig. 1 for an unbounded plate with a hole, and in Fig. 2 we show the same graphs for a plate of finite dimensions. The parametric
equations of the contours of the holes in Fig. 1 and the contours of the finite plates in Fig. 2 have the following form

a) { =Re®®, b) { =R,cos@ + iRysin@, ¢) { = R(e'® + 0.14036¢7%),

d) £ = R(e'® + 0.25¢7%¢).
Here

R=10"m,R;=13-10"m,R,=0.7- 10'm,0< ¢ <2r

A normal force N=1N/m? and zero heat flux ® are specified on the contour I". We took polyvinylbutyral (coupling factor 8=0.431)
as the material, the physical/chemical characteristics of which?? at Ty =293 K are given in the last row of Table 2. The continuous curves
are drawn taking into account the coupling of the deformation and temperature fields, while the dashed curves are the results obtained
ignoring coupling.

In Fig. 3 we show the results of calculations of the time dependence of & = ogy/Ng when the plate is excited by a trapezoidal pulse of
pressure Ng =1 N/m?2 and duration t; =10~ s (for t, =0.1 x 10~% s and t. = 0.9 x 10~ s). The parametric equations of the contours of the holes
are the same as for versions b and d in Figs. 1 and 2. The calculations were carried out for polyvinylbutyral (relaxation time of the heat flux
T =10-5s). The continuous curves correspond to the hyperbolic model of heat conduction (taking into account the relaxation of the heat
flux), while the dashed curves correspond to the parabolic model (ignoring relaxation).

We can conclude from the results obtained that for such materials as polyvinylbutyral, the coupling effect of connectivity may be
considerable, particularly in the region of peak values of the excitation frequency. The amplitude-frequency characteristics of finite plates
are also changed considerably.
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